Sebastian : I have fixed some typo errors. The data-flow charts have been updated yet.
TIGCC Internals

1 History of this document

I [RL] have ported TIGCC to Linux and John D. Ratliff (the guy who manages TechnoPlazza) ported it from Linux to UN*X systems.

Given that some parts of TIGCC/Win32 are written in Delphi, I had to do some efforts for understanding how TIGCC works and look at some internal mechanisms so that I can recompile required parts with Kylix (the .s parser and the patch system) or rewrite some others in 'C' language (the tigcc front-end for instance). Kylix is the Linux port of Delphi with more drawbacks than advantages (huge, slow, no exec support, no library support, Linux only and the worst: x86 only).
I made an attempt to port it with GPC but these tools use too many Delphi specific extensions.
When I done this work, I regretted that no documentation details the TIGCC internal structures and how it works. It's true that any programmer is not obliged to write documentation but it's better, especially for other people.

This is the reason why I have decided to write this doc: it's a information repository for me but it may be an interesting doc too.

2 Overview

The figure 1 describes the data-flow as used in TIGCC v 093 & v0.94 Beta 8.

The figure 2 describes another data flow which is used when files are processed with debug option turned on.

Remark: the parser and the patcher do not physically exist under Windows. They are embedded into tigcc.exe. Under Linux, they have been separated from tigcc but use the same Delphi source code as tigcc.exe.

This data-flow may change in future releases. In fact, the better way should be to remove the patcher and implement a runtime library used by the converter (obj2ti or another one). A new linker written by S. Reichelt may appear soon. It should solve many problems and remove the need of patching assembly files. See the 'Patch' section further in the text.

In this document, the converter is the obj2ti program written by Julien Muchembled. It superseded the original Xavier Vassor's converter which is now obsolete.

3 Remark

This document explains some stuffs as I have understood them.

It may be incomplete and/or inaccurate since I am not a TIGCC guru. Well, not yet ! Use it with care…

Figure 1:

Figure 2:

The diagram for debug information only includes one program 'parser', which merges the .c file, the .s file, and the .o file. As I [SR] told you, in the Windows release this process is a little different: Before the .s file is assembled, the .c file is merged into it (ParseDebugSFile), and after assembling (if it was successful), the .o file is used to extract the positions in the file (ParseCOFFDebugSFile). This way it is possible to see what's wrong if GCC produces invalid code which cannot be assembled.
4 Tools description

· The GNU C compiler (gcc) translates C source code into MC68000 assembly language source code. The C compiler is not included as part of the assembly language tools package.

· The GNU assembler (gas) translates assembly language source files into machine language object files. Source files can contain instructions, assembler directives, and macro directives. You can use assembler directives to control various aspects of the assembly process, such as the source listing format, data alignment, and section content.

· The AmigaOS assembler (a68k) is used for assembling older programs which was originally written with this tool. It produces object files in AmigaOS format.

· The GNU linker (ld) combines object files into a single executable object module. As it creates the future executable module, it performs relocation and resolves external references. The linker accepts relocatable COFF object files (created by the assembler) as input. It also accepts archiver library members and output modules created by a previous linker run. Linker directives allow you to combine object file sections, bind sections or symbols to addresses or within memory ranges, and define or redefine global symbols.

· The GNU archiver (ar) allows you to collect a group of files into a single archive file. For example, you can collect several macros together into a macro library. The assembler will search through the library and use the members that are called as macros by the source file. You can also use the archiver to collect a group of object files into an object library. The linker will include the members in the library that resolve external references during the link.

· The GNU objcopy (objcopy) is used to convert a68k generated object files into COFF object files. The linker can use only COFF object files.

· The converter (obj2ti) is invoked at the final stage. It's used for converting a single COFF object file into a TI executable file (an assembly program). The converter do ??

· The patcher is a program which has been developed for circumventing some problems with the converter and avoid to modify the GNU linker. It's an important program in the TIGCC process. It's invoked after a C file has been processed into a S file. The S file is parsed and modified by the patcher. It searches for some occurrences and replace them by some others. The modified file is then processed by the GNU assembler.

· The parser inserts extra debug informations (C source line and line number) into assembly files which have been generated by gcc.

The main purpose of this development process is to produce a standalone module that can be executed in a TI graphing calculator.

5 The parser

This program is fairly simple : it takes as input files the global object file, the C source file and the assembly file generated by gcc at compile time with the -gcoff option.

The global object file is used because it contains all the symbols.

The assembly file contains information such as line number references.

The C file is used for extracting source lines and putting them in the assembly file.

6 The patcher

The most important piece of the project, for sure !

It takes as input files an assembly file generated by gcc and uses two external files: tipatch.lib & tipatchmain.lib.

· The goal of this program is to:

· add some assembly code once and at a specific location in all the assembly generated files.

· optimize the code, under some circumstances, by removing local branches.
· to implement ROM calls (1111 line emulator).
The code generated by the GNU tools do not know anything about the TI architecture : which and how registers are used, the stack pointer, the context, how to handle the value returned by main, the LCD, and so on.

It's normal. As any code generation tools, this step is usually managed by the linker at the final stage.

In TIGCC, this work done by the patcher. It's a weird way but this is due to historical reasons. The new linker may clean-up the data-flow…

Well, but what does it do more precisely ?

1°) The patcher adds some startup code for saving the stack, the screen area, and some register used by your program. Some code implemented may depend on some user directives (such as #define SAVE_SCREEN for instance).

Example (taken from HelloWorld.s):

/* Main Startup Code */
Comments

.even
Align code

.xdef __save__sp__
Define a global var

/* Screen Saving Support */
Some code for saving LCD area

pea.l (%a2)

lea (%sp,-3840),%sp

pea 3840

pea 0x4C00

pea (%sp,8)

move.l 0xC8,%a0

move.l (%a0,0x26A*4),%a2

jsr (%a2) /* memcpy */

/* exit and atexit fix */

movem.l %d3-%d7/%a2-%a6,-(%a7)
Exit support: save registers

jbsr _main
Jump to user's code

movem.l (%a7)+,%d3-%d7/%a2-%a6
Exit support: restore registers

/* Screen Saving Support (Restoring) */
Restore LCD area

pea 3840

pea (%sp,16)

pea 0x4C00

jsr (%a2)
No value is returned

lea (%sp,3864),%sp

movea.l (%a7)+,%a2

rts

__save__sp__:
Location where SP will be saved

.long 0
Reserve 1 longword for storing SP

.even
Realign code

But, the patcher can also add some extra code within functions such as main. Example (taken from HelloWorld.s):

#APP

Move.l %a7,__save__sp__
Copy the SP into the __save__sp__ variable

#NO_APP

Now, how does it work ? You should read the next section on the patch file format. It will help you to understand the following paragraphs.

The patcher reads and store in memory the 2 external patch files. Then, it reads and store in memory the assembly file. The assembly files contains some patching references. Exemple (taken from HelloWorld.s):

/* Include Patch: nostub_patch */

/* Include Patch: nostub_save_screen */

/* Include Patch: no_retval */

/* Include Patch: nostub_exit_support */

/* Include Patch: save_the_sp */

/* Include Patch: complex_main */

These references define which sections ($$patch) of the patch files will be applied and which will not be.

Patch file sections are applied in the order they appear in the patch file, independently of the references order.

Moreover, the patch mechanism is contextual that is to say it will depend of which text is present in assembly file.

The tipatch.lib file is applied first and tipatchmain.lib is applied next.

2°) Optimizing: if a branch (not to a subroutine, but any normal or conditional branch) branches simply to the next line, it is removed.

3°) ROM calls [KK]: ‘we just replace "jbsr _ROM_CALL_nnn" and "jsr _ROM_CALL_nnn" by ".word _F_LINE+0xnnn" if "_F_LINE" is found in the .s file or the lines inserted from tipatch.lib into the .s file (a tipatch.lib entry which contains ".set _F_LINE,0xF800").
7 The patch files & some history

The 2 following paragraphs are mail excerpts between SR and RL.

7.1 History & limitations :

If you know the very first versions of the TIGCC library, you probably know about #define USE_LONGMUL_PATCH and similar constructs. They were needed since Xavier's linker often produced illegal code when used with multiple files, so object files could not be used. We didn't know about ld and its -r option at that time. These constructs just embedded asm("...") directives in the code.

When implementing floats, this became a major problem: floating point arithmetic uses a lot of different library functions. It was unacceptable to let the user include them one by one, or in little packages. Therefore I had the idea to insert these routines directly into the assembly source. This was possible because multiple .c files couldn't be used anyway. Whether a patch had to be included or not was decided by collecting all words which appeared in the .s file.

This became obsolete when we started to use static libraries, but another problem evolved: if any global variable was declared before tigcclib.h was included, the program would crash (in nostub mode, at least), since program

execution always starts at the first byte in memory. So I decided to move these things into tipatch.lib. I also created a new tipatchmain.lib.

Now we have this speed problem. Large files are problematic even in the Windows version, since the entire [assembly] file has to be scanned for words [by the patcher]. I don't think there's an easy way around this. I have thought up a method, but I feel that you will not like it very much, since it reduces portability even more…

I want to write a new linker. By that I mean a real linker, not similar to obj2ti. I want to write it in Delphi, because that is the only way I can guarantee that we will not have the same problems as before. Namely:

· we don't even need to talk about Xavier's linker: It was buggy and not maintainable.

· obj2TI is stable. It is easy to add small things, but: It caused us a lot of trouble with A68k integration: It always expects exactly three sections, with the third one being a BSS section. This is really not acceptable. If you look at its source, you will see that understanding it is really hard. I have gone through the entire source code on paper and written my own comments into it, and I understood almost everything now. Otherwise, I wouldn't have been able to fix a very nasty bug in the first release. But if someone tried to implement anything major, like nostub BSS support, custom relocs, nostub ROM calls, etc., he/she would break obj2ti into a thousand pieces.

· mlink has its problems as it seems, and the source code is not available.

· Thomas Nussbaumer tried to create a linker once, but did not finish it.

So, if you look at it closely, you will see that we don't really have anything usable. What I want to do is completely different: I want to read the object files into an internal representation, which the user can optionally see and process. I want to make routines for merging sections, relocating, etc., which rely exclusively on this internal representation. Everything should be object-oriented.

Of course, if I really do this, the Linux version will always be behind the Windows one. On the other side, I need the information I get about the programs this way to implement source-level debugging some time in the

future. It's a dilemma. Do you have any suggestions?

7.2 The patch file :
The format was developed by Zeljko and me. It goes like this:

· if a line starts with '|', it is ignored (comment),

· if a line is empty, it is ignored as well,

· if a line contains $$patch, the next character has to be a '(', followed by a series of arguments separated by commas, ')', '{', some more text (recursive!), and '}',

· if a line contains $$warning or $$error, a warning/error is produced (should convert to #warning/#error),

· otherwise, the line is simply included in the .s file as-is.

The text inside the $$patch blocks is only processed if _at least one_ of the identifiers inside '('...')' appears somewhere in the .s file.

I think this is pretty clear. What you'll have to do is to use 'grep' (as I understand) or something similar to convert all 'asm("/* Include Patch: ... */);' in the header files into '#define HAVE_PATCH_...', and include the automatically generated header files from doors.h and nostub.h.

In case you want to know, what really happens is a little more complicated: tipatch.lib is loaded into an internal structure only once, and then this internal structure is used.

Shortcuts:

· SR = Sebastian Reichelt

· KK = Kevin Kofler

· RL = Romain Liévin

TI executable file

converter

COFF archive file

GNU ar

objcopy

A68k

ASM source file

S source file

GNU as

COFF object file

GNU ld

COFF object file

GNU as

patcher

S source file

GNU cc

C source file

Parser 1

S patched file

COFF object file

GNU ld

COFF object file

GNU as

patcher

S source file

GNU cc

S patched file

C source file

Parser 2

